Past, Present and Future of Clinical Research in Pediatric Rheumatology

Jaime Guzman MD MSc FRCP C
Clinical Associate Professor, UBC
Staff Rheumatologist, BC Children’s Hospital
May 28th, 2011
Disclosures and Acknowledgements

• No conflicts of interest to disclose
• Photos from ACR collection
• Photos from: Occupational and Physical Therapy for Children with Rheumatic Disorders, by G. Kuchta and I. Davidson
Objectives

1. To describe the evolving nature of clinical research in pediatric rheumatology, using juvenile arthritis as example

2. To highlight the role of collaborative research networks
Today’s presentation

• The case:
 – What will happen to my child?
• The past
• The present
• The future
• Back to the case and wrap up
The case

- A.D., a three year old previously healthy girl presents with a right-sided limp for 3 months
- On exam, swelling and limited range in knee, ankle and both wrists.
- X-ray and blood work unremarkable
The case

• You give the bad news:
 – Your child has arthritis

• They ask:
 – Doctor, what will happen to my child?
 – What treatment will be needed?

• You scratch your head and reflect:
 – What you said yesterday
 – What can you say today
 – What you might say tomorrow
The past

• Your child has a debilitating disease with no cure
• No medication has ever been properly tested (in a RCT) for this condition
• We can’t even agree on how to call this disease
• We will start treatment with high-dose aspirin and see how things go
The past
The past

- Prognosis and treatment based on case series and adult trials
- Disease called juvenile rheumatoid arthritis on this side of the Atlantic and juvenile chronic arthritis on the other side.
- Current criteria for juvenile idiopathic arthritis (JIA) published in 2004
- First properly-sized randomized controlled trials published around 1985
The case – present

- A.D., a three year old girl with newly diagnosed arthritis
- Parents ask:
 - Doctor, what will happen to my child?
 - What treatment will be needed?
• Your child has JIA
• >80 % of children with this JIA subtype (oligoarthritis), are fully controlled with treatment
• Best initial treatment is with NSAIDs and joint injections
• If this doesn’t work, DMARDs and biologic agents are effective (RCTs)
The present

• International agreement on JIA definition and subtypes:
 – oligoarthritis (40-60%), polyarthritis RF- (10-25%), polyarthritis RF+ (5-10%), enthesitis-related (3-10%), systemic (5-15%), psoriatic (2-10%), undifferentiated (10-20%)

• Prognosis based on several large inception cohorts

• Treatment informed by > 100 trial reports

Petty et al, J Rheumatol 2004
How did we get here?

- Two major clinical research advances:
 - Multicentre longitudinal inception cohorts
 - Multicentre randomized clinical trials
- In essence: collaborative clinical research networks
- Similar to networks in other areas of pediatrics, but mostly investigator driven
- Basic research advances, biologic agents
Collaborative networks

• Pioneers: The U.S.A.—U.S.S.R. collaborative clinics
• Pediatric Rheumatology Collaborative Study Group (PRCSG)
• Pediatric Rheumatology International Trials Organization (PRINTO)
• Canadian Association of Pediatric Rheumatology Investigators (CAPRI)
Multicentre cohorts vs. case series

Cohorts:
- Many centres, generalisable
- Defined data collection
- Prospective data entered in database
- Few years to collect enough sample
- Standard self-report measures

Case series:
- One centre, limited generalisability
- Usual charting
- Retrospective extraction of data
- Many years to collect enough sample
- No self-report available
ReACCh-Out

• Research in Arthritis in Canadian Children emphasizing Outcomes (ReACCh-Out).
• Pan-Canadian project of pediatric rheumatology centres (CAPRI) funded by CIHR
• Follows course and outcomes of >1500 children with JIA
• Every 6 months core data set:
 – joint counts, functioning, parent and physician global assessment, quality of life, inflammatory markers, disease features, treatment requirements
ReACCh-Out findings

- With current treatments, the percentage of children with inactive JIA (all subtypes) increases from 5% at enrollment to 33% at 6 months, and 49% at 24 months.
- >50% of children with oligoarthritis were fully functional and had no detectable disease within 6 months.
Analysis challenges
Trials in JIA

• > 14 trials of anti-inflammatory agents
• > 14 trials of non-biologic DMARDs
• > 5 trials of biologic agents
• 3 trials of corticosteroid injections

• Challenges in data analysis
• Unique randomized withdrawal trials

Haskes & Laxer, JAMA 2008
Analysis of RCT’s

• Follow subjects on treatment A or treatment B for two years
 – See how they end
 – See how they change from baseline to end
 – See how they do during the full study
Traditional RCT

Effect of drugs A and B on function

CHAQ score

Months on treatment

Drug A

Drug B
Randomized withdrawal trial

- All children start on active drug
- Responders are randomized to continue drug or switch to placebo
- Children who flare on placebo go back on drug
- Open long-term follow-up
Randomized withdrawal trial

% improved vs. Months on treatment
The case – future

• A.D., a three year old girl with newly diagnosed arthritis

• Parents ask:
 – Doctor, what will happen to my child?
 – What treatment will be needed?
The future

• Based on her genetic, biological and clinical markers, your child has a 90% chance of full remission within 2 years and 60% chance that it will never come back (cured?).

• The best initial treatment for her is A, followed by B+C.

• We will avoid D since it has a high risk of side effects in your child.
The future

- Genetic markers
- Biological markers
- Clinical prediction
- Collaborative trials of treatment paths instead of single drugs
- Real-time monitoring of function
- Oral “biologic” agents targeted to mediator signal transduction
The LEAP project

- Linking Exercise, Activity and Pathophysiology in JIA (LEAP)
- Team grant funded by CIHR (about half a million per year)
- Collaboration of researchers in rheumatology (CAPRI), physical activity and rehabilitation, biomarkers, bone and muscle development
- Longitudinal measurement of physical activity, disease activity, biomarkers, bone structure and muscle strength in JIA cohorts
LEAP conceptual model

Successful PA intervention

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↓ Disease activity (inflammation)

↓ Pain

↓ Fatigue

↑ Opportunities for PA

↑ Family modeling of PA

Perceived barriers for PA

↓ Self efficacy for exercise

Cultural and societal factors

Successful drug therapy

Physical activity (exercise)

Disease activity (inflammation)

Successful PA intervention

↑ Bone strength

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability

↑ Physical activity (exercise)

↑ Physical activity (exercise)

↑ Muscle strength

↑ Bone strength

Damage to joints

↑ Development and growth

↑ Quality of life

↑ Functional ability
Measuring What Counts

- 20 children with JIA monitored one week before and one week after joint injection
- Electronic tracking of physical activity and community participation via iPhone and accelerometer
- To test feasibility of monitoring in cohorts and as outcome measure in trials
UCAN

- Understanding Childhood Arthritis Network
- International collaboration of cohorts of children with JIA (Meta-Cohorts)
- To elucidate genetic markers explaining disease phenotype heterogeneity

From: bluegiant.com
Back to the case – wrap up

• A.D., a three year old girl with newly diagnosed JIA

• Parents ask:
 – Doctor, what will happen to my child?
 – What treatment will be needed?
In summary

- Pediatric rheumatology has seen major changes in how clinical research is done.
- Multicenter inception cohorts and randomized withdrawal trials have advanced prognosis and treatment of JIA.
- How do we answer parents’ questions is changing and the future is bright.
- Clinical epidemiology challenges remain in deciding how best to analyze information.
Past, present, future
Thank you. Any questions?